Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arch Pathol Lab Med ; 148(3): 327-335, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37270802

RESUMEN

CONTEXT.­: Current approaches for characterizing retained lung dust using pathologists' qualitative assessment or scanning electron microscopy with energy-dispersive spectroscopy (SEM/EDS) have limitations. OBJECTIVE.­: To explore polarized light microscopy coupled with image-processing software, termed quantitative microscopy-particulate matter (QM-PM), as a tool to characterize in situ dust in lung tissue of US coal miners with progressive massive fibrosis. DESIGN.­: We developed a standardized protocol using microscopy images to characterize the in situ burden of birefringent crystalline silica/silicate particles (mineral density) and carbonaceous particles (pigment fraction). Mineral density and pigment fraction were compared with pathologists' qualitative assessments and SEM/EDS analyses. Particle features were compared between historical (born before 1930) and contemporary coal miners, who likely had different exposures following changes in mining technology. RESULTS.­: Lung tissue samples from 85 coal miners (62 historical and 23 contemporary) and 10 healthy controls were analyzed using QM-PM. Mineral density and pigment fraction measurements with QM-PM were comparable to consensus pathologists' scoring and SEM/EDS analyses. Contemporary miners had greater mineral density than historical miners (186 456 versus 63 727/mm3; P = .02) and controls (4542/mm3), consistent with higher amounts of silica/silicate dust. Contemporary and historical miners had similar particle sizes (median area, 1.00 versus 1.14 µm2; P = .46) and birefringence under polarized light (median grayscale brightness: 80.9 versus 87.6; P = .29). CONCLUSIONS.­: QM-PM reliably characterizes in situ silica/silicate and carbonaceous particles in a reproducible, automated, accessible, and time/cost/labor-efficient manner, and shows promise as a tool for understanding occupational lung pathology and targeting exposure controls.


Asunto(s)
Minas de Carbón , Exposición Profesional , Neumoconiosis , Humanos , Neumoconiosis/diagnóstico por imagen , Neumoconiosis/patología , Pulmón/diagnóstico por imagen , Pulmón/patología , Polvo , Dióxido de Silicio , Silicatos , Microscopía Electrónica de Rastreo , Carbón Mineral , Exposición Profesional/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...